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ABSTRACT 
 
The paper presents the analysis of risk premium of the interest rate term structure for the 
Latvian money market. On the back of the approach used by F. Diebold, G. Rudebusch 
and B. Aruoba, it has been assumed that the coefficients of the Nelson–Siegel model are 
unobservable therefore the model of this research paper has been estimated using the 
Kalman filter. The risk premium behaviour has been obtained for interest rates of 
different maturities and forecasting horizons between May 2000 and July 2005. The 
results obtained indicate that the amount of the risk premium was significant and its 
volatility substantial between 2000 and 2002. In post-2002 period, its behaviour 
gradually stabilised and was marked by a downward trend after 2004. 
 
Key words: term structure of interest rates, risk premium, the Nelson–Siegel model, the 
Kalman filter 
 
JEL classification codes: C32, D84, E43, E47, G10 
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INTRODUCTION 
 
Information captured in the prices of financial assets gives signals to CBs about the 
expectations of market participants regarding such fundamentals as the future economic 
activity, inflation, and short-term interest rate dynamics. The analysis of these 
expectations plays a significant role for the future policy process.  
 
Aiming for its core objective of price stability, the Eurosystem, as an example, 
consistently adheres to the two-pillar strategy when implementing its monetary policy, 
and the financial asset prices are important for it as the second pillar indicator.(19) 
 
Financial asset prices are a reflection of market participants' expectations because the 
former are, in fact, forward-looking. The present asset prices are determined by 
discounting expected future payment flows. Two factors affect the discount rate used in 
the financial asset assessment: 
1) compensation for consumption postponed to the future and not used at the current 
point in time; and  
2) compensation for the risk associated with the future payment flow uncertainties.  
 
In the assessment of a financial asset, the investor shall be able to predict the future 
payment flows and the discount rates with risk premiums included that are applicable to 
these flows. 
 
The price of fixed income financial instruments is determined by interest rates to be 
used in discounting the respective payment flows. The interest rates, in turn, are 
dependent upon the expectations of the fundamental macroeconomic variables like 
inflation and the real interest rates, as well as upon the compensation for risks related to 
uncertainty of the respective expectations. 
 
Information about financial market participants' expectations regarding future interest 
rates is particularly significant for CBs because it helps them foresee if a particular 
decision will surprise market participants and what their short-term reaction to it could 
be. The official future interest rate expectations figure prominent also when the current 
monetary policy stance is formulated. Changes in long-term interest rates that primarily 
depend on the expected official future interest rates affect many participants of the 
financial market. Therefore, aiming for the assessment and control over current shifts in 
the monetary situation, CBs need to have some understanding about market participants' 
expectations about the official future interest rates.  
 
Forward rates are the most widely used measure of interest rate expectations. They are 
the implied future interest rates incorporated in the present interest rates for different 
maturities. Provided that uncertainties associated with future interest rates were absent, 
forward interest rates would be equal to the expected future interest rates. However, the 
future interest rates are not known for sure. In order to hold this interest rate risk, the 
investors who want to avoid the risk would demand a risk premium. In such a way in 
equilibrium, this will drive a wedge – the risk premium – between the forward rate and 
the expected short-term interest rate. In addition, longer future horizons are related to a 
more pronounced uncertainty regarding possible interest rate movements, hence the 
respective risk premium is likely to increase with maturity. Consequently, the longer the 
time horizon, the larger becomes the difference between the forward rate and the 
expected rate.  
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In this study, the risk premium is defined as the difference between the forward rate and 
the expected future interest rate: 
 
pr iEf t .  

  
To estimate the expected future interest rate, the procedure proposed by F. Diebold and 
C. Li was used.(4) These authors proved that a relatively precise forecast of the term 
structure of interest rates can be derived from autoregressive models for factors 
corresponding to the level, slope and curvature of the yield curve. Basing on the 
approach of F. Diebold, G. Rudebusch and B. Aruoba (6), the study assumes that these 
unobservable factors correspond to the Nelson–Siegel model coefficients that are 
estimated and predicted in this study using the Kalman filter.(13)  
 
The authors of this study have opted for the Kalman filter because it has certain 
advantages over other econometric methods. Due to the ongoing transition of Latvia's 
economy, a great number of economic variables are not stationary. As is known, the 
Kalman filter provides an opportunity to work with non-stationary variables. Moreover, 
economic variables are affected by a number of factors, e.g. the investment and political 
climate, that cannot be accurately estimated, and the Kalman filter allows for the 
estimation of economic variables and factors that are changing over time.  
 
Chapter 1 defines some basic theoretical concepts that are needed for further analysis 
and builds the theoretical framework for the factor model of the term structure of 
interest rates. Chapter 2 deals with the factor model on the back of Latvia's data. Section 
2.1 reviews the selected data sample. Section 2.2 analyses the estimates obtained by the 
Kalman filter. Section 2.3 presents the results of the estimated risk premium. Section 2.4 
describes the empirical results. The most important effects of the study are summed up 
in the Conclusion. Appendix 1 presents the theoretical framework of the Kalman filter. 
Appendices 2–5 furnish the risk premium dynamics for 1-, 3-, 6- and 12-month interest 
rates at different forecasting horizons, while Appendix 6 sums up mean premiums and 
standard deviations for 1-, 3-, 6- and 12-month interest rates. 
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1. FACTOR MODELS OF THE TERM STRUCTURE OF INTEREST RATES 
  
The introductory part of the Chapter defines and describes the basic theoretical 
concepts. 
  
i(t,T) denotes the nominal spot interest rate, i.e. the yield to maturity of a zero-coupon 
bond bought at time t with T > t maturity date. Assuming that no-arbitrage restriction is 
imposed, the nominal implied forward interest rate at time t with the delivery term τ and 
maturity at T can be defined as follows (17): 
 

 
 )(),(1)(

)(),(),(
),,(

ttiT

ttitTTti
Ttf




  [1.1]. 

 
The forward rate premium is calculated as the difference between the forward interest 
rate and the expected future interest rate: 
 
pr ),(),,(),,( TiETtfTt t   [1.2] 

 
where Et is the conditional mathematical expectations operator for information available 
at time t.  
 
Taking into account that the forward rate at each time t can be calculated using equation 
[1.1], premium determination should rest upon the estimation of ),( TiEt  . Provided that 

an appropriate model is used, this term can be defined as a modelled forecast for the 
respective interest rate. Obviously, the forecasts of different time horizons τ – t and 
those of interest rates on different maturities T – τ must be interrelated. Indeed, this 
model should capture the entire term structure of interest rates.  
 
As there are considerably fewer sources of systematic risk than there are tradable 
financial instruments, all price information of tradable interest-rate-based financial 
instruments can be accumulated in a few variables or factors.(15; 16) Consequently, 
term structure factor models of interest rates use structures with a small number of 
interest rate factors and the associated factor loadings that relate interest rates on 
different maturities to these factors. Factor structures ensure useful data compression 
and simultaneously the so-called parsimony principle.  
 
A number of approaches to constructing the interest rate factors and loadings of these 
factors are presented in the literature. The factors may be the first principal components 
that are orthogonal to each other by definition, while the loadings may be relatively 
unrestricted.(15; 16) The first three principal components are usually correlated to the 
level, slope and curvature of the yield curve. Another approach widely employed by 
practitioners and CBs is the Nelson–Siegel model (introduced in the work of C. Nelson 
and A. Siegel (17)). Factor loadings in the Nelson–Siegel model have economically 
plausible restrictions: the forward rates are always positive and, with the term to 
maturity increasing, the discount function approaches zero. A no-arbitrage dynamic 
latent factor model is the third approach. The most general subclass of latent factor 
models postulates a linear or affine functional relationship of latent factors with interest 
rates and restrictions on the factor loadings that rule out arbitrage strategies involving 
interest rate instruments.  
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According to the factor model approach, a large set of yields of various maturities is 
expressed as a function of a small number of unobserved factors. The set of yields is 
denoted as y(τ) where τ is the term to maturity. CBs use widely the Nelson-Siegel (17) 
curve to represent the cross-section yield data: 
 


















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





 


e
ee

y
11

)( 321  [1.3] 

 
where β1, β2, β3 and λ are the parameters. Parameter λ captures velocity at which 
exponential terms decrease. The study assumes it to be a constant because this 
assumption considerably reduces volatility of parameters it , rendering their behaviour 

more predictable. Parameters β1t, β2t and β3t are interpreted as three latent (unobservable) 
factors.(6) Factor loading of β1t is equal to 1, i.e. as  , it remains unchanged, thus 

t1  can be considered a long-term factor. Factor loading for β2t is

  )1( e

. This 

function, equal to 1 if 0  and monotonically decreasing to 0, can be considered a 

short-term factor. The loading of β3t is








e
e )1(

; it is the function, equal to 0, if 

0  (i.e. it is not a short-term factor), growing to its maximum at 



8.1

, and 

afterward reversing to 0 (i.e. it is not a long-term factor) that hence can be considered a 
medium-term factor. Chart 1.1 presents the given factor loadings under the condition 
that .2   
 

 
 
The long-term, short-term and medium-term factor can be interpreted as the level, slope 
and curvature of the yield curve, respectively. For example, the long-term factor t1  

describes the level of the yield curve. In addition, the relation tyy 1)(lim)( 


 

can be derived from equation [1.3]. An increase in t1  would cause a rise by the same 

amount in all yields )(y  and simultaneously push up the level of the yield curve.  
 
Several authors, e.g. J. A. Frankel and C. Lown (11), define the slope of the curve as 

)0()( tt yy  , which, according to formula [1.3], is t2 . In such a way, the short-term 

factor t2  determines the slope of the yield curve. Due to an increase in t2 , the short-
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term rates grow faster than the long-term rates because loading 

  )1( te

, which is 

multiplied by t2  at small   values, would be close to 1, but at large   values it would 

be close to 0, which, in turn, causes shifts in the slope of the yield curve.  
 
An increase in factor t3 , on the other hand, has little effect on the rise of short-term 

and long-term interest rates because factor loading 






t

t

e
e )1(

 would be close to 

0 at both large and small values of  , and would more affect the growth of the medium-
term interest rates (with a maximum growth in interest rates corresponding to maturity 




8.1
), thus increasing the curvature of the yield curve.  

 
As has been proved by F. Diebold and C. Li (4), the Nelson–Siegel curve can be 
represented as a dynamic latent factor model with β1, β2 and β3 as time-varying factors of 
level, slope and curvature; the terms multiplied by these factors are factor loadings. 
Thus the model can be represented as follows: 
 

























 


e
e

C
e

SLy tttt

11
)(  [1.4] 

 
where Lt, St and Ct are the time-varying variables β1, β2 and β3. This approach will be 
further supported by empirical estimates.  
 
If the dynamics of Lt, St and Ct follows a vector autoregressive process of the first order, 
this model forms a state-space system. The transition equation governing the dynamics 
of the state vector is  
 
 
 
 [1.5] 
 

 
where t = 1, …, T is the time series length in the sample. The equation that relates a set 
of N yields to the three unobservable factors can be written  
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Using generally accepted vector and matrix notations, the given state-space system can 
be written  
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ttt A  1  [1.7], 
 

ttty   [1.8], 

 
where vector )',,( tttt CSL . 

To achieve the linear least squares optimality of the Kalman filter, we assume a 
condition that the white noise transition and measurement disturbances are orthogonal 
both mutually and relative to the initial state: 
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0)( '
0  tE  [1.11]. 

 
The analysis is dominated by the assumption that H and Q matrices are diagonal. The 
assumption regarding a diagonal Q matrix, which implies mutually uncorrelated 
deviations of yields of various maturities from the yield curve, is quite common. Despite 
the fact that F. Diebold, G. Rudebusch and B. Aruoba did not impose any restrictions on 
matrix H, non-diagonal matrix elements turned out to be insignificant.(6) Therefore for 
computation simplicity, this paper deals only with the diagonal type of matrix H. 
 
Overall, the state-space approach ensures an effective framework for the analysis and 
estimation of dynamic models. The inference that the Nelson–Siegel model can easily 
be transformed into a state-space model is particularly useful, because in this case the 
Kalman filter produces estimates of the maximum likelihood along with optimally 
filtered and smoothed estimates of the model factors. Moreover, in this paper preference 
is given to the one-step Kalman filter method rather than the two-step Diebold–Li 
approach because, according to the standard theory, simultaneous estimation of all 
parameters results in correct inferences. By contrast, the two-step approach has a 
drawback: the uncertainty of parameter estimation and signal extraction via the first step 
is not accounted in the second step computations. Furthermore, the state-space approach 
raises a possibility of future extensions, e.g. existence of heteroskedasticity, shortage of 
data, etc, albeit the present paper does not take on the task of dealing with such 
extensions.  
 
It is useful to compare the approach used in this paper with those proposed by other 
authors. An unrestricted VAR estimated for a set of yields is a very general (linear) 
model. This model has a potential drawback of its results being possibly dependent on 
the particular selected set of yields. The aforementioned factor representation can 
aggregate information from a large set of yields. Another factor model ranking among 
the simplest ones is VAR estimated with the principal components1, which have been 
formed from a large set of yields. This approach imposes a restriction on factors to be 
mutually orthogonal, yet it does not fully restrict factor loadings. However, the model 
used in this paper potentially allows for factor correlation but restricts factor loadings 
imposing limits on the set of admissible yield curves. For instance, the Nelson–Siegel 

                                                 
1 VAR term structur analysis can be found in the works of e.g. C. Evans and D. Marshall (9; 10). 
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model guarantees positive forward interest rates for all time periods, and also, as 
maturities increase, the converging of the discount function toward 0. Such 
economically-founded restrictions are likely to support the analysis of the yield curve 
dynamics. It is also possible to introduce alternative restrictions, of which the non-
arbitrage restriction is imposed most often. It ensures consistency in interest rate 
adjustments of the yield curve over time. Nevertheless, the evidence on the extent to 
what these restrictions affect the results is quite varied.2  
 

                                                 
2 Works of e.g. A. Ang and M. Piazessi (1) as well as G. Duffee (7) can be used for comparison. 
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2. EMPIRICAL RESULTS 
 
2.1 Data 

 
Arithmetic means of 1-, 3-, 6-, 9- and 12-month RIGIBID and RIGIBOR have been 
used to estimate the model in this study. Interest rates of shorter maturities are not 
analysed, because their variance (particularly that of overnight rates) is excessively 
pronounced at the end of the reserve maintenance period. Monthly data for the period 
from May 2000 to July 2005 have been used.3 Interest rates have been computed as 
daily arithmetic means of the respective month. 
 

2.2 Model Estimation 
 
The model of this paper forms a state-space system where the VAR(1) transition 
equation describes the dynamics of the vector of latent state variables, with the linear 
equation linking the observed yields with state vector. In contrast to F. Diebold, 
G. Rudebusch and B. Aruoba (6), this study makes use of independent autoregressive 
first order specifications for each state variable, i.e. all non-diagonal elements of matrix 
A are equal to zero. This approach allows for a considerable reduction in the number of 
coefficients to be estimated, taking into account the condition of a rather short time 
series. In the research of F. Diebold, G. Rudebusch and B. Aruoba, all off-diagonal 
coefficients are insignificant therefore it justifies the specification selection for the 
present study. In addition, the work of F. Diebold and C. Li (4) deals with the 
autoregressive specification of Lt, Ct, St as well, yet the estimation of the coefficients, 
instead of being carried out using the Kalman filter (as in the present study due to its 
advantages), is based on the two-step method.  
 
Several model parameters are to be estimated. The (3 x 3) dimensional transition 
diagonal matrix A comprises three free parameters, the (3 x 1) dimensional constant 
vector μ has three free parameters, and the measurement matrix Λ comprises one free 
parameter λ. In addition, the transition and disturbance covariance matrix Q contains 
three free parameters (one disturbance variance for each of the three latent factors: level, 
slope and curvature), while the measurement disturbance covariance matrix H has five 
free parameters (one disturbance variance for each of the five yields). Consequently, 
overall 15 parameters are to be estimated via optimisation, and it is a complex numerical 
exercise.  
 
For computing optimal yield forecasts and the related errors, the Kalman filter has been 
applied to this configuration of parameters; afterwards, the Gaussian likelihood function 
has been estimated for the model using the prediction-error decomposition of the 
likelihood. The theoretical frame of the Kalman filter is detailed in Appendix 1. For 
initialisation of the Kalman filter, the values of the state variables are used, applying the 
least square method and cross-sectional data at time t = 1 (the first observation in the 
time series). 
 
Table 2.2.1 presents the results of the estimated model. Autoregressive coefficients Lt, Ct 
and St point to a highly persistent dynamics (0.99, 0.88 and 0.85, respectively). The 
values thus obtained are extremely close to those in F. Diebold, G. Rudebusch and 

                                                 
3 As of May 2000, the Bank of Latvia started the computation of 9- (for internal use) and 12-
month RIGIBID and RIGIBOR, therefore, for the purpose of a larger sample, the period starting 
with May 2000 has been selected.  
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B. Aruoba (the coefficients are 0.99, 0.94 and 0.84, respectively). As in the study of the 
above authors, when moving from Lt to St to Ct the transition shock volatility increases. 
Though all the constants are insignificant, they remain in the specification of this paper 
to rule out the possibility of unstable estimates.  
 

Table 2.2.1 
Model Parameter Estimates 
 

L S C μL μS μC σL σS σC 

0.994 
(0.013) 

0.890 
(0.046) 

0.850 
(0.098) 

–0.054 
(0.087) 

–0.078 
(0.091) 

–0.002 
(0.121) 

0.011 
(0.015) 

0.132 
(0.021) 

0.271 
(0.077) 

 
Note. Standard errors of coefficients are given in brackets.  
 

2.3 The Risk Premium 
 
In the study, the risk premium is defined as the difference between the forward rate 
f and the expected future interest rate of the respective maturity ),( TiEt  : 

 
pr ),(),,(),,( TiETtfTt t   
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where )'('),,(   ttttt ECSL is the forecast of state variables )( t steps 

ahead under the condition that the initial value of tt is the state variable values filtered 

at time t. 
 
The filtered values of state variables are used also in the calculations of forward rates:  
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SLti  is the theoretical 

interest rate value consistent with the Nelson–Siegel model at time t. 
 
Chart 2.3.1 shows risk premium pr(t,1,2) on 1-month interest rate for one month 
forecasting horizon. It should be noted that the risk premium defined in this study is 
correct, if the estimated expectation measure is correct as a forecast obtained with the 
help of the Kalman filter. Chart 2.3.1 demonstrates that up to 2002, the volatility of risk 
premium was substantial, then it stabilised, and after that its decline from 36 basis points 
in October 2004 to 16 basis points in July 2005 was recorded. At the close of 2004, the 
said decline in risk premium was associated with the market participants' expectations 
for repegging of the lats from the SDR basket of currencies to the euro, which implied a 
smaller exchange risk. The risk premium continued to shrink also at the beginning of 
2005, which was likely to be associated with the ongoing convergence. Appendix 2 
shows the dynamics of 1-month interest rate risk premium for the horizon of 2–12 
months. Some points in time with negative risk premiums notwithstanding, the premium 
remains positive on average over the entire reporting period. Negative risk premiums 
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may imply the presence of a number of expectation errors. The premium values for 
forecasting horizons exceeding 4 months are only positive. Appendices 3, 4 and 5 
highlight a similar behaviour for 3-, 6- and 12-month interest rate premiums.  
 

 
 
For the purpose of estimating the average premium of the reviewed period, the 
arithmetic mean premium of the period and its standard deviation for 1-, 3-, 6- and 12-
month interest rates have been computed. 
 
Chart 2.3.2 and 2.3.3 show arithmetic mean risk premiums and their standard deviations 
for 1–12 month forecasting horizon. The premiums are positive, according to the 
prediction, and, with the forecasting horizon growing, they increase. The longer the 
horizon, the larger premium is demanded by market participants. By contrast, standard 
errors display a tendency to increase in the period up to six month horizon, after which 
they decline steadily. The tables of Appendix 6 report mean risk premiums on 3-, 6- and 
12-month interest rates and their standard deviations. Data in Appendix 6 lead to an 
inference that the behaviour of 3-, 6- and 12-month interest rate premiums and standard 
deviations is similar to the behaviour of 1-month interest rates.  
 

 
 
Premiums with the same forecasting horizon but different term to maturity display a 
peculiar tendency of behaviour. With the interest rate term increasing, the risk premium 
decreases. Chart 2.3.4 demonstrates the behaviour of 1-, 3-, 6- and 12-month risk 
premiums for one month forecasting horizon. The Chart shows that over a longer term 
the risk premium decreases. A similar relation is observed also for 2–12 month 
forecasting horizon. The theoretical reasoning for the behaviour of the risk premium 
within this model is provided in Chapter 2.4.  
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Table 2.3.1 presents the comparison of Latvian interest rate risk premiums with those of 
other countries and their evaluation in different sources. The analysis of the data leads to 
a conclusion that at present the interest rate risk premiums in Latvia are higher than in 
the developed countries. The ongoing convergence is likely to bring interest rate risk 
premiums in lats closer to those of the euro area.  
 

Table 2.3.1  
Risk Premiums in Latvia and Other Countries  
(1-month interest rate risk premiums for different forecasting horizons; in basis points) 

 

 1 month 3 months 6 months 9 months

Latvia1  19  52  88  116
1-month LIBOR Germany (December 1989–
December 1998)2 5 10 15 27

EONIA swap rates  

January 1999–September 20012 0 2 6 10

January 1999–June 20022 1 2 4 13

Germany (1972–1998)3 0–5 5–10 20–25 25–35

Canada (1988–1998)4 6 29 58 100
 
1 Results of this paper. 
2 (8).  
3 (2).  
4 (13).  
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2.4 Explanation of Risk Premium Behaviour  
 

This Chapter attempts to explain theoretically the empirical behaviour of the above-
referred risk premium within the framework of the researched model.  
 
In compliance with equation [1.2] above 
 
pr ),(),,(),,( TiETtfTt t    [2.1]. 

 
For simplicity, we shall replace equation [1.1] with the following definition of the 
forward rate: 
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T
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Ttf  [2.2], 

 
which corresponds to a continuously compounded rate.  
 
The substitution of elements from equation [1.4] into [2.2] instead of i(t, τ) and i(t, T) 
gives 
 

  
















 


)()(

)()()()(

)(
)()(

),,( tTt
tTt

t

tTt

tt etTet
T

ee
C

T

ee
SLTtf

  [2.3]. 
 
The interest rate forecast from equation [1.4] is 
 

     
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 




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
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e
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)(

1

)(

1
),(   [2.4] 

where Et(Lτ), Et(Sτ) and Et(Cτ) are forecasts of the respective factors at time t for the 
future period τ.  
 
Accounting for the factor dynamics' subjection to the first order autoregressive process, 
let us produce the following factor forecast equations:  
 

   
11
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1
111111 1

1
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a

a
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t
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t 
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   [2.5], 

 

   
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1
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1
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a
SaaaSaSE

t
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St
t

t 

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
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   [2.6], 

 
33

33
33 1

1

a

a
CaSE

t

Ct
t

t 






  [2.7]. 

 
Equations [2.1] and [2.3]–[2.7] give the following risk premium: 
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 [2.8]. 
 
Chart 2.4.1 shows the risk premium from equation [2.8] as the function of interest rate 
maturity (T – t) at the forecasting horizon τ – t = 1 month. Factor values of this risk 
premium Lt = 2.756, St = –0.482, Ct = 0.048, and coefficients aii and μj correspond to the 
Kalman filter estimates of July 2005, i.e. the last sample observation. The Chart 
discloses that at the given parameter values the function is declining, if T – t is growing, 
and this is in support of the empirical facts referred to in the previous Chapter.  
 

 
 
When we fix the interest rate term T – τ = 1 month for equation [2.8] with these 
parameter values and change the forecasting horizon, we obtain the risk premium curve, 
which, depending on the horizon, is presented in Chart 2.4.2. The Chart shows that 
when the forecasting horizon increases the risk premium grows. It confirms the 
empirical facts and heuristic assumptions from Chapter 2.3 about investors demanding 
higher risk premiums for larger uncertainty related to investments at a more distant point 
in time.  
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CONCLUSION 
 
The paper presents the analysis of risk premium of the interest rate term structure for the 
Latvian money market. The risk premium has been defined as the difference between 
the forward interest rate and the expected future interest rate of the respective maturity. 
The interest rate term structure is assessed consistently with the Nelson–Siegel model. 
 
On the back of the approach used by F. Diebold, G. Rudebusch and B. Aruoba, it has 
been assumed that the coefficients of the Nelson–Siegel model are unobservable, 
therefore the model of this research paper has been estimated using the Kalman filter. 
 
RIGIBID and RIGIBOR interest rates of the Latvian money market have been used as 
the observable variables.  
 
The expected future interest rate has been computed as the Kalman filter forecast  
n periods ahead. 
 
The risk premium behaviour has been obtained for interest rates of different maturities 
and forecasting horizons between May 2000 and July 2005. The results obtained 
indicate that the amount of the risk premium was significant and its volatility substantial 
between 2000 and 2002. In post-2002 period, its behaviour gradually stabilised and was 
marked by a downward trend after 2004. 
 
This is in support of the assumption that with the forecasting horizon increasing the risk 
premium grows, while with the expansion of maturity it becomes smaller. These facts have 
been explained theoretically in the paper on the basis of the model's mathematical structure.  
 
The risk premium estimation becomes more complicated when the market participants' 
expectations embedded in the financial market data are to be analysed. The respective 
analysis carried out within this research has proposed an additional instrument for a CB 
to timely identify the market participants' expectations regarding interest rates in the 
future and to learn about their confidence in the conducted monetary policy. 
Nevertheless, the employment of such instruments as money market RIGIBID and 
RIGIBOR restricts the forecasting horizon to one year.  
 
In order to expand the forecasting horizon and to enhance the accuracy of the risk 
premium estimates, the up-coming research foresees to include in the model the bond 
market data, which are better determinants of the convergence process (to euro interest 
rates). In such circumstances, the application of the Kalman filter has particular 
advantages, for rare transactions and irregular quotations are characteristic for the 
government bond market of Latvia.(3) In addition, bond market data are non-stationary. 
The Kalman filter has another positive trait: it implicitly allows for accounting of such 
unobservable factors as investment and political climate, whose correct quantitative 
estimation is impossible. 
 
The including of such macroeconomic variables as inflation, GDP, etc (6) in the model 
opens up another potential area of investigation. It would elucidate whether the interest 
rate term structure carries information that would allow for forecasting macroeconomic 
variables, and, vice versa, whether macroeconomic variables allow for improving interest 
rate forecasts. The results regarding risk premium behaviour obtained by such a method 
would be comparable with the findings of the factor models used in the current study; it 
would likewise be possible to assess the accuracy of the computed risk premium.  
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APPENDICES 
 

Appendix 1  
Detailed Description of the Kalman Filter Methodology 
 
A.1 Properties of conditional mathematical expectations  

 
x and y denote random vectors whose joint distribution has the first and the second 
moments. The second moments are defined as  
 













)'()()'(),(

)'()()'()(

)'()()'()(

xEyExyExyC

yEyEyyEyD

xExExxExD

 {1} 

 
where ' denotes the transposed matrix.  
 
It is assumed that the conditional expected y value with condition x (which holds at a 
normal joint distribution of x and y) can be written as a linear function 
 
E(y│x) = α + B' x {2}.  
 
Vector α and matrix B' will be expressed as moments of equation system {1}. Using the 
property of conditional mathematical expectations  
 
E{E(y│x)} = E(y) {3}, 
 
from equation {2} we obtain  
 
E(y) = α + B' E(x) {4} 
 
or   
 
α = E(y) – B' E(x) {5}. 
 
Multiplying equation {2} by x' gives 
 
E(y│x) · x' = α · x' + B' x · x'. 
 
When computing mathematical expectations for the right and left side of the equation 
and using equation {3}, we obtain 
 
E{E(y│x) · x'} = E{E(y · x'│x)} = E(y · x') = α · E(x') + B'[E (x · x')] 
 
or  
 
E(y · x') = α · E(x') + B'[E (x · x')] {6}. 
 
Multiplying equation {4} by E(x'), we obtain 
 
E(y) · E(x') = α · E(x') + B'E(x) · E(x') {7}. 
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Subtracting equation {6} from equation {7} and using system {1}, we obtain 
 
C(y,x) = E(y · x') – E(y) · E(x') = B'(E(x · x') – E(x) · E(x')) = B'D(x) {8}, 
 
thus arriving at 
 
B' = C(y,x)D–1(x)  {9}. 
 
Substituting B' from equation {9} and α from equation {5} into equation {2}, we obtain 
 
E(y│x) = α + B'x = E(y) – B'E(x) + B'x =  
 
= E(y) – B'(x – E(x)) = E(y) – C(y,x) D–1(x)(x – E(x))  
  
or 
 
E(y│x) = E(y) – C(y,x) D–1(x)(x – E(x))  {10}. 
 
The following representation is derived in a similar way: 
 
D(y│x) = D(y) – C(y,x) D–1(x) · C(x,y)  {11}. 
 

A.2 The Kalman filter 
 
The representation of (n x 1) state-space dynamics of dimensional vector yt can be 
defined with the following equation system: 
 
yt = ct + Ztαt + εt  {12}, 
 
αt+1 = dt + Ttαt + vt+1  {13} 
 
where 
αt is the (m x 1) dimensional vector of unobservable variables;  
ct, dt, Zt, Tt are vectors and matrices of respective dimensions;  
εt and vt are Gaussian random vectors with zero mean.  
 
Equation {12} is often referred to as the signal or observation equation, while equation 
{13} is known as the state or transition equation. 
 
Random vectors εt and vt are treated as serially uncorrelated in time, with the following 
covariance matrix:  
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It is assumed that vectors εt and vt are white noises vectors, i.e.  
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where H and Q are symmetrical matrices of (n x n) and (m x m) dimensions, 
respectively. 
 
It is also assumed that εt and vt do not correlate for all lags: 
 

0)'(  vE t    t, τ  {16}. 

 
The Kalman filter is applied for an optimal estimation of vector αt of unobservable 
variables and for estimation updating when new values of observable variables become 
available. Optimal forecasts for endogenous variable yt are acquired at the same time. 
 
We assume the need to calculate tt  – the optimal estimate (with minimum mean 

squared error) t  using information available up to time t, and tt , which is the error 

covariance matrix for the forecast in state equations. It is also assumed that vectors c and 
d as well as matrices Z and T are known.  
 
The recurrent algorithm of the Kalman filter includes the following steps. 
 
1. Selection of the initial state. 
α1│0 denotes the predicted value of α1, which is based on the initial value of y0. If all 
eigenvalues of matrix T are smaller than 1 by their absolute values, it is assumed that 
α1│0 = E(α1), i.e. unconditional mean value of the process.  
 
We assume that Ω1│0 satisfies the equation 
 
Ω1│0 = T · Ω1│0 T' + Q {17}, 
 
which is consistent with unconditional covariance matrix of the process.  
 
If some eigenvalues of matrix T exceed or are equal to unit, the unconditional mean of 
the process and covariance cannot be selected as initial values (as not existing), and 
hence the selection shall be made on the back of other considerations. 
 
When the initial values α1│0 and Ω1│0 are known, the next action is to calculate α2│1 and 
Ω2│1 for the next time moment. As all computations for periods t = 2, 3, ..., T are 
analogous, the transition computation algorithm for any period t from values αt│t–1, Ωt│t–1 
to values αt+1│t, Ω

 
t+1│t is used.  

 
2. Yt predicting and construction of its covariance matrix 

11 



 tttt Zcy  {18}, 
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tttt HZZ   {19}. 

 
3. Assuming that yt value becomes available at time t. This information allows for the 
adjustment of forecast 1 ttt . 

Yt–1 denotes vector (y0, y1, ..., yt–1)'. Thus from equation {12} we obtain  
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  ),cov(),cov( 11 tttttt YZYy  
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Using equation {10} (substituting y with αt, x with yt, and replacing the unconditional 
mathematical expectation with equation E(·│Yt–1)), we obtain the adjusted value of tt : 
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while  
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The condition that t  is uncorrelated to other factors is used. 

Substituting equation {19} into equation {20}, we obtain 
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Covariance matrix for errors related to the given adjusted forecast is obtained from 
equation {11}: 
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The difference between the adjusted value tt  and value 1 tt , which was predicted 

before information about yt became available, is presented as 

)()'(' 1
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11 
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  ttttttt ZcyHZZZ . Hence the larger the value of the 

expression 11   tttttt yyZcy , i.e. the difference between the realised and 

predicted value of yt, the larger the adjustment ( tt – 1 tt ); however, the given value is 

inversely proportional to the forecasting accuracy, which is consistent with 

   
1 1 '

tt tt HZZ , and directly proportional to covariance between αt and  

yt – '.1Ztt   Consequently, the less accurate the forecast 1tty , the smaller the value of 

the adjustment term in equation {23}, and the larger the conditional covariance between 
αt and yt, the larger the adjustment term. 



A FACTOR MODEL OF THE TERM STRUCTURE OF INTEREST RATES AND RISK PREMIUM ESTIMATION FOR LATVIA'S MONEY MARKET 

 
 

 

 21 

4. Derivation of the state variable forecast for the next period from equation {13}: 
 

ttttttttttttt TdYvEYETdYvTdEYE   )()()()( 1111

  {24}. 
 
Substituting equation {22} into equation {24}, we obtain 
 

)()'(' 1
1

1111 


  ttttttttttt ZcyHZZZTTd  {25}. 

 
Matrix 
 

1
11 )'(' 
  HZZZTk ttttt   {26} 

 
is known as the gain matrix, and equation {25} can be rewritten  
 

)( 111   ttttttt ZcykTd   {27}. 

 
The measurement error covariance matrix for this forecast can be computed using 
equations {13} and {24}:  
 

  ])')([( 11111 tttttttt E  

  ])')([( 11 tttttttt TdvTdTdvTdE  

ttttttttttt QTTvvETET   ')'('])')([( 11   {28}. 

 
Substitution of equation {23} into equation {28} results in  
 

ttttttttttt QTZHZZZT  


 ']')'('[ 1
1

1111   {29}. 

 
A.3 Applying the Kalman filter to forecasts n periods ahead 

 
Via recursive substitution, equation {13} produces  
 

ntntt
n

t
n

t
n

nt vvTvTvTT 





  1
1

2
2

1
1 ... , where n = 1, 2, 3…  {30}. 

 
Projecting nt to t  and tY , we obtain 

 

t
n

ttnt TYE   ),( . 

 
The application of conditional mathematical expectations property leads to  
 

tt
n

tt
n

tt
n

tttnttnttnt TYETYTEYYEEYE   )()(]),([)(  {31}. 

 
From forecast equations of expressions {30} and {31} n-periods ahead, it follows that  
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ntntt
n

t
n

ttt
n

tntnt vvTvTvTT 





  1
1

2
2

1
1 ...)(   {32}. 

 
The measurement error covariance matrix is  
 

QTQTTQTTQTTT nnnnn
tt

n
tnt  

 '...)'()'()'( 2211   {33}. 

 
The following expression for the observed vector is obtained from equation {12}: 
 

ntntnt Zcy   . 

 
Consequently, y forecast for n periods ahead can be computed using the relationship 
 

tnttnttnt ZcYyEy   )(  {34}. 

 
The forecast error, in turn, is characterised by the following relationship: 
 

nttntnttntntnttntnt ZZcZcyy   )()()( . 

 
The covariance matrix of this error is as follows: 
 

HZZyyyyE tnttntnttntnt   '])')([( . 

 
A.4 The Kalman filter in model parameter estimation 

 
If the initial state of 1  and random vectors ),( tt v  are of the Gaussian type, ty  

distribution meeting condition 1tY  also is Gaussian with the mean 

 

11   tttt Zcy  

 
and the measurement error matrix 
 

   
1 1 '

tt tt HZZ .  

 
The distribution density is represented by 









2

1

1
2

1 ')2()( HZZYyf tt

n

tt  

)()'()'(
2

1
exp{ 1

1
11 


  tttttttt ZcyHZZZcy  {35} 

where t = 1, 2, ..., T. 
 

)...,,( 1 Tyyf  represents the total vector density ),...,( 1 Tyy . Taking into account the 
total density property, it can be represented as follows: 
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  )...,,()...,,()...,,( 11111 yyfyyyfyyf TTTT  

)..,.,(...)...,,()...,,( 11

2

0
12111 yyyfyyyfyyyf jT

T

j
jTTTTT 




   {36}. 

Taking log of equation {33} and using equation {32}, the following likelihood function 
is derived: 

])()[(
2

1
log

2

1
2log

2
)...,,(

1

1 1
1

1
1

11   

 





 
tt ttt

T

t
ttT

T

t
ttT yyyy

Tn
yyL

 {37} 
 
where  
φ is the parameter vector,  

 
11 ),0(~

ttttt Nyy ,  011 ),(~ yNy  

where y  is the unconditional mean of the process. 
 

A.5 Model parameter computation algorithm 
 
1. Initial parameter vector 0 is selected. 

2. Steps 1–4 of the Kalman filter recurrent algorithm are taken (see A.2). 

3. For each step, computations are conducted for 1 ttt yy  and  1tt
that are 

included in the formation of the likelihood function of equation {35}. 
4. The new value of parameter vector i , which increases L in equation {37}, is derived 

by one of the numerical methods. 
5. Time steps 2–4 of the Kalman filter recurrent algorithm (see A.2) are repeated until 

 1ii  and 

 )(L

 with sufficiently small value .  
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Appendix 2 
1-Month Interest Rate Risk Premium Dynamics for Different Forecasting Horizons  
(prij is premium for forecasting horizon i (in months) with repayment period j (in months); %) 
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Appendix 3 
3-Month Interest Rate Risk Premium Dynamics for Different Forecasting Horizons  
(prij is premium for forecasting horizon i (in months) with repayment period j (in months); %) 
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Appendix 4 
6-Month Interest Rate Risk Premium Dynamics for Different Forecasting Horizons  
(prij is premium for forecasting horizon i (in months) with repayment period j (in months); %) 
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Appendix 5 
12-Month Interest Rate Risk Premium Dynamics for Different Forcasting Horizons  
(prij is premium for forecasting horizon i (in months) with repayment period j (in months); %) 
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Appendix 6 
Mean Interest Rate Risk Premium and Standard Deviation  
(prij is premium for forecasting horizon i (in months) with repayment period j (in months); %) 
 
On 1-month interest rate 

 pr12 pr23 pr34 pr45 pr56 pr67 pr78 pr89 pr910 pr1011 pr1112 pr1213 
Mean 
premium  0.193629  0.364347  0.515686  0.650680  0.771919  0.881606  0.981610  1.073508  1.158631  1.238101  1.312857  1.383688
Standard 
deviation  0.124962  0.211080  0.267350  0.300950  0.317572  0.321701  0.316850  0.305745  0.290489  0.272687  0.253551  0.233989

On 3-month interest rate 

 pr14 pr25 pr36 pr47 pr58 pr69 pr710 pr811 pr912 pr1013 pr1114 pr1215 
Mean 
premium  0.175572  0.331301  0.470243  0.595022  0.707878  0.810715  0.905146  0.992536  1.074034  1.150609  1.223071  1.292104
Standard 
deviation  0.106270  0.179455  0.227233  0.255724  0.269783  0.273233  0.269068  0.259613  0.246660  0.231579  0.215408  0.198923

On 6-month interest rate 

 pr17 pr28 pr39 pr410 pr511 pr612 pr713 pr814 pr915 pr1016 pr1117 pr1218 
Mean 
premium  0.154646  0.293008  0.417591  0.530540  0.633689  0.728594  0.816575  0.898746  0.976048  1.049272  1.119081  1.186033
Standard 
deviation  0.084945  0.143384  0.181485  0.204165  0.215318  0.218016  0.214659  0.207116  0.196827  0.184895  0.172159  0.159248

On 12-month interest rate 

 pr113 pr214 pr315 pr416 pr517 pr618 pr719 pr820 pr921 pr1022 pr1123 pr1224 
Mean 
premium  0.127464  0.243277  0.349219  0.446817  0.537372  0.621988  0.701603  0.777008  0.848869  0.917749  0.984119  1.048375
Standard 
deviation  0.057915  0.097684  0.123556  0.138914  0.146443  0.148255  0.146006  0.140985  0.134193  0.126398  0.118191  0.110020
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