LATVIJAS BANKA

Short-Term Forecasting of GDP at the Bank of Latvia

Andrejs Bessonovs

Short-term Forecasting of GDP at the Bank of Latvia

- Set of models:
 - Traditional bridge equations;
 - Bridge equations in state-space form;
 - Dynamic factor models.

Operative indicators

- GDP data are available at quarterly frequency and become available with a lag:
 - Flash estimate ~ 2 months;
 - Official release ~ 3 months.
- Instead, most data relating GDP are available faster and at monthly frequency:
 - Money aggregate M3;
 - Industrial production;
 - Retail turnover, etc.

Dataset

- Real-time GDP database by monthly breakdown (monthly revisions) of expenditure and production side.
- Monthly indicators on economic activity including:
 - industrial production;
 - retail turnover;
 - exports, imports;
 - inflation;
 - money aggregates;
 - unemployment, vacancies;
 - taxes, etc.
- Business and consumer surveys.

Aggregated vs. disaggregated approach

• Three approaches:

- GDP at aggregated level using monthly indicators;
- GDP by expenditure side:
 - $Y_{(expenditure)} = C + G + I + X + M;$
- GDP by output side:

 $Y_{(output)} = AB + CDE + F + G + I + HJKO + LMN + TS;$

• Each component of expenditure and output basis has its own set of monthly indicators with appropriate economic meaning.

LATVIJAS BANKA

GDP forecasting using traditional bridge equations

Concept of bridge equations

- Bridge equations describe the correlation between quarterly variables such as GDP (or its components) and monthly indicators.
- Monthly indicators are converted to quarter frequency in line with their characteristics as stock or flow variables.
- Then dependent variable is regressed on monthly indicators in quarterly frequency.

Concept of bridge equations

- y_{tq} –GDP quarterly growth;
- x^{mq} set of monthly indicators converted to quarterly frequency;
- k number of indicators.

Bridge equations' forecasts

LATVIJAS BANKA

GDP interpolation and short-term forecasting using bridge equations in state-space form

State-space form

- The use of bridge equations in state-space form helps to find correlations between quarterly GDP data and monthly indicators on a monthly basis.
- Two equations:
 - Transition equation: unobservable monthly GDP growth depends on operative monthly indicators;
 - Measurement equation: sum of 3 months should be equal to the GDP quarter value.
- Solved by Kalman filter.

State-space form

Quarterly GDP growth is linked to the monthly GDP growth rates

GDP growth forecast using monthly GDP estimates

State-space form advantages and disadvantages

- Advantages:
 - Helps to estimate monthly GDP.
- Disadvantages:
 - Using short time series Kalman filter results are unstable;
 - Results are sensitive to set of variables one use in state-space form.

LATVIJAS BANKA

GDP forecasting using dynamic factor models

Dynamic factor models

- Regression analysis usually uses 4-5 variables at most:
 - Technical difficulties (number of variables cannot exceed number of observations);
 - Models become unstable or inefficient.
- However, there are a lot of variables which contain important information about economic activity.
- Factor models allow to use all that information without losing too much degrees of freedom.

Concept of Factor Models

- There exist few unobservable factors, which explain most of economic indicators' fluctuations.
- Those factors are independent from each other.
- We reduce all necessary information about economic activity into unobservable factors.
- We are able to calculate unobservable components using Principal Components Analysis.

Stock-Watson dynamic factor model

Set of indicators

Idiosyncratic component

Incomplete datasets

	X1	X2	X3	X4	X5	X6	X7	X8	X9	X10	X11	X12
1999M07	-21.2	-9.9	N/A	N/A	-43.5	91.2	-30.1	N/A	N/A	N/A	111.0	172.0
1999M08	-21.1	-9.7	N/A	N/A	-44.0	91.3	-23.9	N/A	N/A	N/A	110.5	175.3
1999M09	-20.9	-9.6	N/A	N/A	-45.5	91.5	-22.5	N/A	N/A	N/A	112.0	180.0
1999M10	-11.8	-10.2	N/A	N/A	-44.5	96.0	-22.3	N/A	N/A	N/A	111.1	181.4
1999M11	-11.4	-10.2	N/A	N/A	-45.5	96.3	-18.3	N/A	N/A	N/A	113.3	183.3
1999M12	-11.1	-10.1	N/A	N/A	-46.0	96.5	-15.6	N/A	N/A	N/A	115.2	184.6
2000M01	-14.3	-2.7	N/A	N/A	-32.0	91.1	-16.7	1758	-13595	11068	114.4	186.4
2000M02	-14.0	-2.3	N/A	N/A	-32.5	90.9	-15.8	-47391	31978	14901	115.4	185.8
2000M03	-13.7	-2.4	N/A	N/A	-32.5	90.7	-17.3	-10534	11097	-24232	117.0	185.2
:	:	:	:	:	:	:	:	:	:	:	:	:
2001M04	-3.4	14.9	N/A	N/A	1.0	99.5	-2.4	-36353	16562	-8532	120.9	178.4
2001M05	-6.6	19.4	N/A	N/A	1.0	102.9	-3.0	473	-28502	8225	122.0	178.5
2001M06	-3.3	28.6	N/A	N/A	1.5	104.3	-10.1	-102918	137589	-13223	124.3	178.1
2001M07	1.7	13.8	N/A	N/A	N/A	103.7	-10.5	-47712	102368	-26735	123.6	179.2
2001M08	2.5	9.5	N/A	N/A	N/A	106.3	-6.2	51661	-58787	13167	121.1	181.2
2001M09	0.4	9.1	N/A	N/A	N/A	103.8	-9.6	5170	27891	4536	121.3	182.3
2001M10	-1.2	12.7	N/A	N/A	N/A	100.7	-7.0	-2212	46315	-22871	121.2	181.3
2001M11	-2.0	10.2	N/A	N/A	N/A	100.3	-7.6	143211	1625	-111120	122.0	180.9
2001M12	-5.5	4.3	N/A	N/A	N/A	98.8	-6.4	89525	109352	-28649	121.1	180.2
2002M01	3.9	7.4	N/A	N/A	N/A	104.2	-7.3	5434	10808	384	120.6	180.0
2002M02	3.9	-0.1	10.3	N/A	N/A	107.3	-7.0	-9898	-11061	13202	121.6	180.4
2002M03	6.2	4.5	6.9	N/A	N/A	110.8	-7.7	-22522	43591	-5050	121.1	180.7
2002M04	-1.9	9.1	8.9	N/A	N/A	109.5	-8.2	-53069	55865	11920	120.6	180.2
2002M05	-1.6	18.8	9.0	2.1	17.6	107.1	-8.9	-39135	64181	9461	119.3	179.7
2002M06	-1.5	21.2	9.1	9.8	17.3	107.5	-13.6	25102	-73701	10965	116.9	179.1
:	:	:	:	:	:	:	:	:	:	:	:	:
2009M05	-29.0	-44.2	-40.9	-41.5	-69.5	70.3	-31.2	14893	-276095	16535	105.8	171.1
2009M06	-27.7	-42.0	-40.5	-45.6	-70.7	70.2	-29.0	11527	-308734	99374	105.9	171.5
2009M07	-26.7	-34.0	-39.7	-38.4	-70.3	71.5	-28.7	N/A	N/A	N/A	N/A	N/A

Expectation-maximization algorithm

- Database *X* could be divided into two subsets:
 - $-X^{NA}$ missing observations;
 - $-X^{OBS}$ available observations.
- We can estimate missing observations using expectation-maximization (EM) algorithm.

Expectation-maximization algorithm

• Stop, when changes in *F* are small:

Unobservable factors

Forecasting using dynamic factor models

- While modelling and forecasting with factor models, one should consider the following:
 - Number of unobservable factors;
 - Number of lags of latent factors;
 - Number of lags of endogenous variable.
- We chose parameters, which maximize the forecasting ability of the model (RMSFE).

Forecasting using dynamic factor models

• 1-step ahead:

$$\hat{y}_{t+1}^1 = \alpha_1 + \beta_1(L)F_t + \gamma_1(L)y_t$$

• h-steps ahead:

$$\hat{y}_{t+h}^h = \alpha_h + \beta_h(L)F_t + \gamma_h(L)y_t$$

Dynamic factor models forecasts

• Next 4 quarters forecasts (model: 1 factor, 1 factor lag, none GDP lags)

Factor models advantages and disadvantages

- Advantages:
 - Factor models allow to use large datasets;
 - Using the same dataset one could forecast necessary macroeconomic variable, not even GDP.
- Disadvantages:
 - There is little economic interpretation for latent factors and equations;
 - Factor model tracks only past observations therefore predictability of the model is limited when structural breaks occur;
 - It is difficult to determine number of variables in dataset. Even more, the greater number of variables does not necessary improve model's predictability.

LATVIJAS BANKA

Comparison of models' forecasting ability

Comparing models' forecasting ability

- There are 9 models for short-term forecast which one to use?
- Start to look at out-of-sample forecast

-2/3 of sample - actual values, 1/3 - out of sample forecast.

• RMSFE indicates the forecasting performance of the model in the past:

$$RMSFE = \sqrt{\frac{1}{T} \sum_{i=1}^{T} (y_i - \hat{y}_i^F)^2}$$

Forecasting error

Forecasting ability: aggregated approach

GDP root mean squared forecasting error (RMSFE) (pp.) 2004Q4-2009Q1

Horizon	Traditional bridge	Bridge in state-space	Factor	Combination
+Q1	2.61	2.58	2.56	2.52
+Q2			3.45	3.92
+Q3			6.34	6.72
+Q4			8.13	8.63

* Forecast combination is just a simple average of individual models

Forecasting ability: disaggregated by expenditure

1 quarter ahead GDP RMSFE (pp.) on expenditure basis, 2004Q4-2009Q1

Model	Y(expenditure)	Private consumption	Government consumption	Investment	Exports	Imports
Traditional Bridge	4.34	5.11	9.7	14.55	4.12	4.74
Bridge in state-space	4.1	5.59	10.93	15.13	3.88	4.74
Factor	2.12	5.32	9.6	12.86	3.69	7.02

Forecasting ability: disaggregated by output

1 quarter ahead GDP RMSFE (pp.) on output basis, 2004Q4-2009Q1

Model	Y(output)	AB	CDE	F	G	Ι	НЈКО	LMN	TS
Traditional bridge	2.77	5.25	2.86	4.94	3.53	7.34	3.39	2.8	14.52
Bridge in state-space	2.52	4.46	2.99	5.9	3.51	8.26	3.28	5.01	15.56
Factor	2.58	5.64	2.26	5.65	3.29	9.22	3.15	3.96	16.53

Practical use

 Results of the short-term forecasting models are reported to the Board of the Bank of Latvia and Monetary Policy Department colleagues on a weekly basis.